Rapid Communication

Disruption of the β -Sheet Structure of a Protected Pentapeptide, Related to the β -Amyloid Sequence 17–21, Induced by a Single, Helicogenic C^{α}-Tetrasubstituted α -Amino Acid

FERNANDO FORMAGGIO,^a* ANDREA BETTIO,^a VITTORIO MORETTO,^a MARCO CRISMA,^a CLAUDIO TONIOLO^a and QUIRINUS B. BROXTERMAN^b

^a Institute of Biomolecular Chemistry, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy

^b DSM Research, Life Sciences, Advanced Synthesis and Catalysis, P.O. Box 18, 6160 MD Geleen, The Netherlands

Received 12 May 2003 Accepted 16 May 2003

Abstract: Fifteen years ago it was shown that an α -aminoisobutyric acid (Aib) residue is significantly more effective than an L-Pro or a D-amino acid residue in inducing β -sheet disruption in short model peptides. As this secondary structure element is known to play a crucial role in the neuropathology of Alzheimer's disease, it was decided to check the effect of Aib (and other selected, helix inducer, C^{α}-tetrasubstituted α -amino acids) on the β -sheet conformation adopted by a protected pentapeptide related to the sequence 17–21 of the β -amyloid peptide. By use of FT-IR absorption and ¹H NMR techniques it was found that the strong self-association characterizing the pentapeptide molecules in weakly polar organic solvents is completely abolished by replacing a single residue with Aib or one of its congeners. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd.

Keywords: amyloid-related sequence; helix inducer; infrared absorption; nuclear magnetic resonance; β -sheet breaker; β -sheet structure; C^{α}-tetrasubstituted α -amino acid

INTRODUCTION

About 20 years ago we were the first to describe an IR absorption method to titrate quantitatively the extent of β -sheet structure in peptides [1]. In particular, β -sheet disruption was easily monitored following the disappearance of the intense amide I C=O stretching band at about 1630 cm⁻¹ of strongly intermolecularly H-bonded molecules. It was also shown that the increasing tendency of peptides to self-aggregate is paralleled by a decrease in their chemical reactivity and solubility. Subsequently this method, applied to numerous biologically relevant peptides including *C*-terminal sequences of substance P [2], highlighted the β -sheet breaker properties of the helicogenic Aib (α -aminoisobutyric acid) residue [3,4]. Studies on model peptides unravelled similar properties for the L-Pro residue [5,6]. In 1989, using a series of (L-Val)_n homo-oligomers as model host sequences, it was reported that the rank order observed for the destabilization of the β -sheets formed by protected peptides containing a selected, single guest residue replacement at an internal position was Aib \gg

^{*}Correspondence to: Dr Fernando Formaggio, Department of Organic Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy; e-mail: fernando.formaggio@unipd.it

Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd.

L-Pro > D-Val \gg L-Val [7]. In a solvent of low polarity the Aib/L-Val hexapeptide was found to be folded into a helix structure.

Elimination of neuritic plaques composed of the fibrillar β -amyloid (A β) peptide is a potential target in the prevention or therapy of the Alzheimer's disease. The strongest peptide \cdots peptide self-interactions are mediated by short hydrophobic sequences (e.g. 17–21, -L-Leu-L-Val-(L-Phe)₂-L-Ala-) in the middle of A β [8–11]. A number of recent investigations demonstrated that the β -sheet structure of A β , of its central segments, and of related fibril forming peptides may be disrupted by incorporating *N*-alkylated L- α -amino acids (including L-Pro), D- α -amino acids or α -hydroxy acids [8–16].

This study examined by FT-IR absorption and ¹H NMR techniques in CH_2Cl_2 or $CHCl_3$ solution the formation and stability of the self-associated species generated by the protected pentapeptide $Z_{-L}-Leu_{-L}-Val_{-L}-Phe_{-L}-Asp(OtBu)-OtBu$, where Z is benzyloxycarbonyl and OtBu is *tert*-butoxy, related to the $A\beta$ sequence 17–21 [8], and the disruptive effect on the β -sheet structure induced by a single point replacement. More specifically, the L-Val residue was substituted for Aib or the related, helix inducer, C^{α} -tetrasubstituted α amino acids L-(α Me)Val (C^{α} -methyl valine) and Ac₆c (1-aminocyclohexane-1-carboxylic acid) [4].

MATERIALS AND METHODS

Synthesis and Characterization of Peptides

Melting points were determined using a Leitz (Wetzlar, Germany) model Laborlux 12 apparatus and are not corrected. Optical rotations were measured using a Perkin-Elmer (Norwalk, CT, USA) model 241 polarimeter equipped with a Haake (Karlsruhe, Germany) model D thermostat. Thin-layer chromatography was performed on Merck (Darmstadt, Germany) Kieselgel 60F₂₅₄ precoated plates using the following solvent systems: 1, (CHCl₃-EtOH, 9:1); 2, (Buⁿ-OH-AcOH- H_2O , 3:1:1); 3, (toluene-EtOH 7:1). The chromatograms were examined by UV fluorescence or developed by chlorine-starch-potassium iodide or ninhydrin chromatic reaction as appropriate. All compounds were obtained in a chromatographically homogeneous state. The physical properties and analytical data for the newly synthesized peptides are listed in Table 1. All final products and their synthetic intermediates were

also characterized by ¹H NMR (data not shown). Peptide bond formation was achieved in CH_2Cl_2 solution using N-ethyl, N'-(3-dimethylaminopropyl)-carbodiimide in the presence of 7-aza-1-hydroxy-1,2,3-benzotriazole as the hydroxylamine-based additive [17].

Infrared Absorption

The solid-state infrared absorption spectra (KBr disk technique) were recorded with a Perkin-Elmer model 580 B spectrophotometer equipped with a Perkin-Elmer model 3600 IR data station and a model 660 printer. The solution spectra were obtained using a Perkin-Elmer model 1720 X FT-IR spectrophotometer, nitrogen flushed, equipped with a sample-shuttle device, at 2 cm⁻¹ nominal resolution, averaging 100 scans. Cells with path lengths of 0.1, 1.0 and 10 mm (with CaF_2 windows) were used. Spectrograde methylene chloride, deuterochloroform (99.8% d), dimethylsulfoxide (DMSO) (99.9% d₆), 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3hexafluoroisopropanol (HFIP) were purchased from Fluka (Buchs, Switzerland). Solvent (baseline) spectra were recorded under the same conditions.

¹H NMR

The ¹H NMR spectra were recorded with a Bruker (Karlsruhe, Germany) model AM 400 spectrometer. Measurements were carried out in deuterochloroform (99.96% d; Aldrich, Milwaukee, WI, USA) and deuterated dimethylsulfoxide (99.96% d₆; Acros Organics, Geel, Belgium) with tetramethylsilane as the internal standard. The free radical 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO) was purchased from Sigma (St Louis, MO, USA).

RESULTS AND DISCUSSION

Figure 1 shows that the molecules of the fully protected pentapeptide Z-L-Leu-L-Val-(L-Phe)₂-L-Asp(OtBu)-OtBu are strongly intermolecularly H-bonded in CH₂Cl₂ solution at 40 mM concentration. By diluting the solution to 1 mM the intensity of the characteristic IR absorption band at about 1635 cm⁻¹ progressively decreases, eventually disappearing between 5 and 1 mM concentration. A parallel trend may be seen, although less clearly, in the NH stretching (amide A) region by following the absorption near 3290 cm⁻¹ (not shown). Alternatively, the β -sheet structure present at 40 mM concentration is sensitive to the addition of solvents capable of interacting with the peptide C=O or the N-H groups (not shown). In

	ng point °Cì	Recrystallization solvent ^a	$[\alpha]_{\mathrm{D}}^{20}$ (°) ^b		TLC		IR^{c} (cm ⁻¹)
	5			$R_{ m fl}$	$R_{ m fII}$	$R_{ m III}$	
Z-L-Phe-L-Asp(OfBu)-OfBu 49–51	51	EtOAc/LP	-14.9	0.95	0.95	0.80	3302, 1728, 1693, 1656, 1537
Z-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 85-86	36	EtOAc/LP	-26.6	0.95	0.95	0.80	3302, 1728, 1701, 1642, 1532
Z-L-Val-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 191–19	193	CH_2Cl_2/LP	-31.5	0.95	0.95	0.65	3293, 1727, 1638, 1526
Z-Aib-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 155–15	157	CHCl ₃ /LP	-30.0	0.95	0.95	0.55	3295, 1732, 1696, 1647, 1528
Z-L-(aMe)Val-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 76–77	22	CHCl ₃ /LP	-44.0	0.95	0.95	0.55	3307, 1724, 1695, 1655, 1532
Z-Ac ₆ c-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 97–99	66	CHCl ₃ /LP	-28.9	0.95	0.95	0.70	3314, 1728, 1693, 1654, 1523
Z-L-Leu-L-Val-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 218-22	220	CH_2Cl_2/LP	-30.2	0.95	0.95	0.60	3291, 1729, 1702, 1639, 1533
Z-L-Leu-Aib-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 166–16	168	CH_2Cl_2/LP	-33.4	0.95	0.95	0.50	3300, 1728, 1698, 1655, 1528
Z-L-Leu-L-(aMe)Val-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 138-14	140	CH_2Cl_2/LP	-33.4	0.95	0.95	0.50	3307, 1729, 1697, 1656, 1526
Z-L-Leu-Ac ₆ c-(L-Phe) ₂ -L-Asp(OtBu)-OtBu 185–18	187	CHCl ₃ /LP	-28.1	0.95	0.95	0.65	3292, 1724, 1694, 1653, 1528

Table 1 Physical and Analytical Properties for the Newly Synthesized Peptides

^a EtOAc, ethyl acetate; LP, light petroleum. ^b c = 0.5, methanol. ^c The IR absorption spectra were obtained in KBr pellets (only significant bands in the 3500–3200 and 1800–1500 cm⁻¹ regions are reported).

J. Peptide Sci. 9: 461-466 (2003)

Copyright @ 2003 European Peptide Society and John Wiley & Sons, Ltd.

Figure 1 FT-IR absorption spectra (1800–1500 cm⁻¹ region) of the protected pentapeptide Z-L-Leu-L-Val-(L-Phe)₂-L-Asp-(OtBu)-OtBu in CH₂Cl₂ solution at various concentrations (given in the Figure as mM concentrations).

particular, 10% DMSO and 5% TFE or HFIP are sufficient to suppress completely the 1635 cm⁻¹ band. Closely comparable results were obtained with the CHCl₃/DMSO solvent mixture. The dissociative effect brought about by the so-called 'chemical chaperones' (e.g. DMSO and fluorinated alcohols) [18] on the intermolecular β -sheet structure was reported in model and biologically active peptides, including A β peptides and the scrapie prion protein [1,2,5–7,18,19].

The effect of a single amino acid replacement (L-Val at position 2 of the pentapeptide) by the helicogenic C^{α}-tetrasubstituted Aib, (α Me)Val, and Ac₆c residues is illustrated in Figure 2. Even at 40 m_M concentration in CH₂Cl₂ solution there was no evidence of the 1630 cm⁻¹ band in the IR absorption spectrum of any of the three pentapeptide analogues. Again, a similar trend was observed for the 3290 cm⁻¹ band (not shown). The strong C=O stretching absorption of these peptides at 1672 cm⁻¹ is most probably associated with the onset of a 3₁₀-helical structure [20]. Dilution from 40 to 0.1 m_M concentration did

not change the spectral patterns of the three analogues.

The 3_{10} -helical structure of the L-(α Me)Val analogue was confirmed by ¹H NMR experiments in CDCl₃ solution at 1 mm concentration by adding increasing amounts of either DMSO [21] or the paramagnetic nitroxide TEMPO [22]. Indeed, the results of these titrations clearly indicate that exclusively the N(1)H and N(2)H protons of the pentapeptide are sensitive to the addition of the perturbing agents (not shown), a signature characteristic of the 3_{10} helix [23]. Conversely, the NH proton signals in the ¹H NMR spectrum of the L-Val reference peptide are remarkably broadened at 40 mm concentration in CDCl₃ solution, a phenomenon indicative of selfaggregation. Addition of 10% DMSO makes all NH proton signals sharp, as they appear in the spectrum of the L-(α Me)Val peptide in neat CDCl₃.

In summary, it was unambiguously demonstrated that the β -sheet structure of a fully protected pentapeptide related to the sequence 17–21 of A β in weakly polar organic solvents can be completely disrupted by replacing a single residue with a

Figure 2 FT-IR absorption spectra (1800–1500 cm⁻¹ region) of the protected pentapeptides Z-L-Leu-Xxx-(L-Phe)₂-L-Asp-(OtBu)-OtBu, where Xxx is L-Val (A), L-(α Me)Val (B), Aib (C) or Ac₆c (D), in CH₂Cl₂ solution at 40 mM concentration.

helix supporting C^{α} -tetrasubstituted α -amino acid. As these residues are known to be much more efficient β -sheet breakers than L-Pro or D-amino acids [7], it our contention that this approach would be promising for an extension to the related fully deprotected peptides in aqueous solution. This work is currently in progress in our laboratory.

REFERENCES

- 1. Toniolo C, Bonora GM, Marchiori F, Borin G. An infrared absorption method to titrate quantitatively the extent of self-association in peptides. *J. Am. Chem. Soc.* 1984; **106**: 1455–1457.
- 2. Toniolo C, Bonora GM, Stavropoulos G, Cordopatis P, Theodoropoulos D. Self-association and solubility of peptides: solvent-tritation study of N^{α} -protected *C*terminal sequences of substance P. *Biopolymers* 1986; **25**: 281–289.
- 3. Karle IL, Balaram P. Structural characteristics of α -helical peptide molecules containing Aib residues. *Biochemistry* 1990; **29**: 6747–6756.
- Toniolo C, Crisma M, Formaggio F, Peggion C. Control of peptide conformation by the Thorpe-Ingold effect (C^α-tetrasubstitution). *Biopolymers (Pept. Sci.)* 2001; **60**: 396–419.
- 5. Toniolo C, Bonora GM, Mutter M, Rajasekharan Pillai VN. Linear oligopeptides.78. The effect of the insertion

of a proline residue on the solution conformation of host peptides. *Makromol. Chem.* 1981; **182**: 2007–2014.

- Narita M, Isokawa S, Doi M, Wakita R. The ability of the proline residue to promote successive intramolecular hydrogen bonds in oligopeptides. *Bull. Chem. Soc. Jpn* 1986; **59**: 3547–3552.
- Moretto V, Crisma M, Bonora GM, Toniolo C, Balaram H, Balaram P. Comparison of the effect of five guest residues on the β-sheet conformation of host (L-Val)_n oligopeptides. *Macromolecules* 1989; **22**: 2939–2944.
- 8. Soto C, Kindy MS, Baumann M, Frangione B. Inhibition of Alzheimer's amyloidosis by peptides that prevent β -sheet conformation. *Biochem. Biophys. Res. Común.* 1996; **226**: 672–680.
- 9. Tjernberg LO, Lilliehöök Ch, Callaway DJE, Näslund J, Hahne S, Thyberg J, Terenius L, Nordstedt Ch. Controlling amyloid β -peptide fibril formation with protease-stable ligands. *J. Biol. Chem.* 1997; **272**: 12601–12605.
- Findeis MA. Approaches to discovery and characterization of inhibitors of amyloid β-peptide polymerization. *Biochim. Biophys. Acta* 2000; **1502**: 76–84.
- Kapurniotu A. Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. *Biopolymers (Pept. Sci.)* 2001; **60**: 438–459.
- 12. Hughes E, Burke RM, Doig AJ. Inhibition of toxicity in the β -amyloid peptide fragment β -(25–35) using

Copyright $\ensuremath{\mathbb{C}}$ 2003 European Peptide Society and John Wiley & Sons, Ltd.

N-methylated derivatives. A general strategy to prevent amyloid formation. *J. Biol. Chem.* 2000; **275**: 25109–25115.

- Janek K, Rothemund S, Gast K, Beyermann M, Zipper J, Fabian H, Bienert M, Krause E. In *Peptides* 2000, Martinez J, Fehrentz J-A (eds). EDK: Paris, 2001; 483–484.
- Körtvelyesi T, Hetenyi C, Penke B. In *Peptides 2000*, Martinez J, Fehrentz J-A (eds). EDK: Paris, 2001; 493–494.
- 15. Gordon DJ, Sciarretta KL, Meredith SC. Inhibition of β -amyloid(40) fibrillogenesis and disassembly of β -amyloid(40) fibrils by short β -amyloid congeners containing *N*-methyl amino acids at alternate residues. *Biochemistry* 2001; **40**: 8237–8245.
- 16. Rijkers DTS, Höppener JWM, Posthuma G, Lips CJM, Liskamp RMJ. Inhibition of amyloid fibril formation of human amylin by *N*-alkylated amino acid and α -hydroxy acid residue containing peptides. *Chem. Eur. J.* 2002; **8**: 4285–4291.
- Carpino LA. 1-Hydroxy-7-azabenzotriazole. An efficent peptide coupling additive. J. Am. Chem. Soc. 1993; 115: 4397–4398.
- Tatzelt J, Prusiner SB, Welch WJ. Chemical chaperones interfere with the formation of scrapie prion protein. *EMBO J.* 1996; **15**: 6363–6373.

- Szabo Z, Kiss G, Soos K, Zarandi M, Penke B. In Peptides 1998, Bajusz S, Hudecz F (eds). Akademiai Kiadó: Budapest, 1999; 386–387.
- 20. Kennedy DF, Crisma M, Toniolo C, Chapman D. Studies of peptides forming 3_{10} - and α -helices and β -bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy. *Biochemistry* 1991; **30**: 6541–6548.
- Kopple KD, Ohnishi M, Go A. Conformations of cyclic peptides. IV. Nuclear magnetic resonance studies of cyclopentaglycyl-L-leucyl and cyclodiglycyl-L-hystidyl-diglycyl-L-tyrosyl. *Biochemistry* 1969; 8: 4087–4095.
- 22. Kopple KD, Schamper TJ. Proton magnetic resonance line broadening produced by association with a nitroxide radical in studies of amide and peptide conformation. *J. Am. Chem. Soc.* 1972; **94**: 3644–3646.
- 23. Moretto A, Formaggio F, Crisma M, Toniolo C, Saviano M, Iacovino R, Vitale RM, Benedetti E. $Ac_{10}c$: a medium-ring, cycloaliphatic $C^{\alpha,\alpha}$ -disubstituted glycine. Incorporation into model peptides and preferred conformation. *J. Pept. Res.* 2001; **57**: 307–315.